trapezoid; The seg. that joins the midpts. of 2 sides of a \triangle is \parallel to the third side; \square ;

ey to Chapter 5, pages 195–198

ge 195 • SELF-TEST 2 1. 2. trapezoid 3. rectangle 4. square 5. 11 6. 17; 67

7. Statements

Reasons 1. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$ 1. Given

2. $\overline{HG} \parallel \overline{EF}; \overline{HE} \parallel \overline{GF}$ 2. If 2 lines are cut by a trans. and alt.

int. \triangle are \cong , then the lines are \parallel .

3. EFGH is a \square . 3. Def. of

4. $\overline{HG} \cong \overline{HE}$

4. If 2 \leq of a \triangle are \cong , then the sides opp. those \angle s are \cong . 5. HGFE is a rhombus. 5. If 2 consec. sides of a \square are \cong , then

the □ is a rhombus. 8. a. 🖂

b.

Statements Reasons 1. PQRS is a

1. Given 2. $\overline{PQ} \parallel \overline{SR}$

2. Def. of

3. X is the midpt. of \overline{PQ} ; 3. Given

Y is the midpt. of \overline{SR} .

4. $XQ = \frac{1}{2}PQ$; $YR = \frac{1}{2}SR$

4. Midpt. Thm. 5. $\overline{PQ} \cong \overline{SR} \text{ or } PQ = SR$

5. Opp. sides of a \square are \cong . $6. \ \frac{1}{2}PQ = \frac{1}{2}SR$

6. Mult. Prop. of = 7. XQ = YR

7. Substitution Prop.

8. XQRY is a \square .

8. If one pair of opp. sides of a quad. are both \cong and \parallel , then the quad. is a □. c. trapezoid

197-198 • CHAPTER REVIEW

2. 38 3. 28 4. 6 5. GS = 5 or $\overline{SA} \parallel \overline{GN}$ 6. $\angle SAN \cong \angle SGN$ $\overline{AZ} \cong \overline{GZ}$ 8. $GN = 17 \text{ or } \overline{GS} \parallel \overline{NA}$

- 9. A line that contains the midpt. of one side of a \triangle and is \parallel to another side passes through the midpt. of the third side.
- 10. The seg. that joins the midpts. of 2 sides of a \triangle is \parallel to the third side.
- 11. The seg. that joins the midpts. of 2 sides of a \triangle is half as long as the third side.

12. Statements

1. CDEF is a \square

- 2. $\overline{FE} \parallel \overline{CD}$
- 3. $\overline{FE} \parallel \overline{CR}$ and $\overline{FS} \parallel \overline{DR}$
- 4. S and T are midpts. of \overline{EF} and \overline{ED} .
- 5. $\overline{SR} \parallel \overline{FD}$
- 6. FSRD is a \square
- 7. $\overline{SR} \cong \overline{FD}$

Reasons

- 1. Given
- 2. Def. of □
- 3. $\overline{FE} \parallel \overline{CD}$
- 4. Given
- 5. The seg. that joins the midpts. of 2 sides of a \triangle is \parallel to the third side.
- 6. Def. of □
- 7. Opp. sides of a \square are \cong .
- 13. \square 14. rhombus 15. rectangle 16. square

17. Statements

Reasons

- 1. ABCD is a rhombus
- 2. DO = BO; AO = CO
- 3. DO = DE + EO; BO = BF + FO
- 4. DE + EO = BF + FO
- 5. DE = BF
- 6. EO = FO
- 7. AECF is a \square .
- 8. $\overline{BD} + \overline{AC}$
- 9. $\angle COE \cong \angle COF$
- 10. $\overline{CO} \cong \overline{CO}$
- 11. $\triangle COE \cong \triangle COF$
- 12. $\overline{CE} \cong \overline{CF}$
- 13. AECF is a rhombus.

- 1. Given
- 2. Diags. of a □ bis. each other.
- 3. Seg. Add. Post.
- 4. Substitution Prop.
- 5. Given
- 6. Subtr. Prop. of =
- 7. If the diags. of a quad. bis. each other, then the quad. is a \square .
- 8. Diags. of a rhombus are \perp .
- 9. If 2 lines are \perp , then they form \cong adj. ∠s.
- 10. Refl. Prop.
- 11. SAS Post.
- 12. Corr. parts of $\cong A$ are \cong .
- 13. If 2 consec. sides of a \square are \cong , then the \square is a rhombus.

18. Given: \overline{PX} and \overline{QY} are altitudes of $\triangle PQR$: Z is the midpt. of \overline{PQ} .

Prove: $\triangle XYZ$ is isos.

Statements

- 1. \overline{PX} and \overline{QY} are altitudes.
- 2. $\overline{PX} \perp \overline{RQ}$; $\overline{QY} \perp \overline{PR}$
- 3. $\angle PXQ$ and $\angle PYQ$ are rt. $\angle s$.
- 4. $\triangle PXQ$ and $\triangle PYQ$ are rt. \triangle .
- 5. Z is the midpt. of \overline{PQ} .
- 6. XZ = PZ or $\overline{XZ} \cong \overline{PZ}$; PZ = YZ or $\overline{PZ} \cong \overline{YZ}$
- 7. $\overline{XZ} \cong \overline{YZ}$
- 8. $\triangle XYZ$ is isos.

Reasons

- 1. Given
- 2. Def. of altitude
- 3. Def. of | lines
- 4. Def. of rt. ∧
- 5. Given
- 6. The midpt, of the hypotenuse of a rt. \triangle is equidistant from the 3 vertices.
- 7. Trans. Prop.
- 8. Def. of isos. \triangle
- 19. \overline{ZO} , \overline{DI} 20. 14 21. 4 22. 100

Page 199 • CHAPTER TEST

- 3. sometimes 4. always 5. sometimes 6. never 1. always 2. sometimes
- 7. always 8. sometimes 9. 28 10. 4.5 11. 7j + 2k
- 12. Yes; if both pairs of opp. \triangle of a quad. are \cong , then the quad. is a \square .
- 13. Yes; if one pair of opp. sides of a quad. are both \cong and \parallel , then the quad. is a \square .
- 14. Yes; if the diags. of a quad. bisect each other, then the quad. is a \square .
- 15. Yes; if both pairs of opp. sides of a quad. are \cong , then the quad. is a \square .
- **16.** 14; 15; 26
- 17. 5x 4 = 3(x + 4), x = 8; $6y + 2 = 2y^2 6, y = 4$; $z = \frac{1}{9}(54 + 30) = 42$

18. Statements

- 1. PQRS is a \square .
- 2. $\overline{PS} \cong \overline{QR}$
- 3. $\angle P \cong \angle R$
- 4. PA = RB or $\overline{PA} \cong \overline{RB}$
- 5. $\triangle PAS \cong \triangle RBQ$
- 6. $\overline{AS} \cong \overline{BQ} \text{ or } AS = BQ$

- Reasons 1. Given
- 2. Opp. sides of a \square are \cong .
- 3. Opp. \triangle of a \square are \cong .
- 4. Given
- 5. SAS Post.
- 6. Corr. parts of $\cong A$ are \cong .

4. If 2 consec. sides of a \square are \cong ,

5. The diags. of a \square bis. each other.

9. The diags. of a rhombus are \perp .

12. The acute \triangle of a rt. \triangle are comp.

14. Corr. parts of $\cong A$ are \cong .

then the \square is a rhombus.

Reasons

1. Given

3. Given

2. Def. of □

6. Refl. Prop.

8. SSS Post.

10. Def. of ⊥ lines

13. Def. of comp. 🖄

15. Substitution Prop.

16. Def. of comp. \(\Lambda \)

11. Def. of rt. △

7. Def. of rhombus

A

В

19. Statements

1. $\overline{PR} \parallel \overline{VO}; \overline{RO} \parallel \overline{PV}$

- 2. PROV is a \square . 3. $\overline{PR} \cong \overline{RO}$

 - 4. *PROV* is a rhombus.
 - 5. $\overline{RE} \cong \overline{EV}$ 6. $\overline{EO} \cong \overline{EO}$
 - 7. $\overline{RO} \cong \overline{VO}$
 - 8. $\triangle ROE \cong \triangle VOE$
 - 9. $\overline{OE} \perp \overline{RV}$ 10. $\angle VEO$ is a rt. \angle .
- 11. $\triangle VEO$ is a rt. \triangle .
- 12. $\angle 1$ and $\angle VOE$ are comp.
- 13. $m \angle 1 + m \angle VOE = 90$
- 14. $\angle 2 \cong \angle VOE \text{ or } m \angle 2 = m \angle VOE$

15. $m \angle 1 + m \angle 2 = 90$

16. $\angle 1$ and $\angle 2$ are comp.

- Pages 200-201 CUMULATIVE REVIEW: CHAPTERS 1-5
 - 2. a. yes; skew lines
 - 3. If you enjoy winter weather, then you are a member of the skiing club. 5. Trans. Prop. 4. -1
 - 6. 180; The sum of the meas. of the \leq of a \triangle is 180. 7. 180; \angle Add. Post.
 - 8. 5; The meas. of an ext. \angle of a \triangle equals the sum of the meas. of the 2 remote int. \angle s. 9. $\angle 1$; If $2 \parallel$ lines are cut by a trans., then corr. $\angle s$ are \cong .
 - 10. \overline{EB} ; If 2 \angle s of a \triangle are \cong , then the sides opp. those \angle s are \cong .
 - 11. bisects; \perp 12. a. A and B b. \overrightarrow{SR} and \overrightarrow{ST}

 - 13. a. $\triangle RTA$ b. \overline{DB} c. $m \angle E$ 14. $\frac{38(180)}{40} = 171$ 15. 150, 150 16. 2x + 7 = 4x - 1; 2x = 8; x = 4; SU = 2(4) + 7 = 15; UN = 4(4) - 1 = 15;
 - SN = 3(4) + 4 = 16
 - 17. $MN = \frac{1}{2}[(2r+s) + (4r-3s)] = \frac{1}{2}(6r-2s) = 3r-s$
 - 18. median 19. bisector 20. isos.
 - 21. $m \angle DAC + 2m \angle ADC = 180$, $36 + 2m \angle ADC = 180$, $2m \angle ADC = 144$, $m \angle ADC = 72; m \angle ADF = \frac{1}{9}(72) = 36$