1. Through a pt. outside a line, there is exactly 1 line | to the given line.

2. If $2 \parallel$ lines are cut by a trans., then

3. If 2 \parallel lines are cut by a trans., then

27. Given: $\triangle ABC$

Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180$

1. Draw \overrightarrow{CD} through $C \parallel$ to \overrightarrow{AB} .

2. $\angle 2 \cong \angle 5$, or $m \angle 2 = m \angle 5$

3. $\angle 1 \cong \angle 4$, or $m \angle 1 = m \angle 4$

4. $m \angle ACD + m \angle 4 = 180$; $m \angle ACD = m \angle 3 + m \angle 5$

5. $m \angle 3 + m \angle 4 + m \angle 5 = 180$

6. $m \angle 1 + m \angle 2 + m \angle 3 = 180$

4. ∠ Add. Post.

alt. int. \angle s are \cong .

corr. \triangle are \cong .

5. Substitution Prop. 6. Substitution Prop.

28. Statements

1. $m \angle JGI = m \angle H + m \angle I$

2. $m \angle H = m \angle I$

3. $m \angle JGI = 2m \angle H$

 $4. \ \frac{1}{2}m \angle JGI = m \angle H$

5. \overrightarrow{GK} bisects $\angle JGI$.

6. $m \angle 1 = \frac{1}{2} m \angle JGI$

7. $m \angle 1 = m \angle H$

8. $\overline{GK} \parallel \overline{HI}$

Reasons

Reasons

1. The meas. of an ext. \angle of a \triangle = the sum of the meas. of the 2 remote int.

2. Given

3. Substitution Prop.

4. Div. Prop. of =

5. Given

6. ∠ Bis. Thm.

7. Substitution Prop.

8. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .

29. 2x + y + 125 = 180, 2x + y = 55, y = 55 - 2x; (x + 2y) + (2x + y) = 90, (x + 2y) + 55 = 90, x + 2y = 35; x + 2(55 - 2x) = 35, x + 110 - 4x = 35,

3x = 75, x = 25; 2x + y = 55, 50 + y = 55, y = 5

30. (5x + y) + (5x - y) + 100 = 180, 10x = 80, x = 8; 2x + y = 5x - y, 2y = 3x, 2y = 24, y = 12

31. $\angle 1 \cong \angle 2 \cong \angle 5$; $\angle 3 \cong \angle 4 \cong \angle 6$

32. $\angle 7 \cong \angle 8$, $\angle 11 \cong \angle 12$

a-b. Check students' drawings. See figure at the right.

c. The angle measures 90, so the bisectors are \perp .

d. Given: $\overrightarrow{AB} \parallel \overrightarrow{CD}; \overrightarrow{AE}$ bisects $\angle BAC$;

 \overrightarrow{CF} bisects $\angle ACD$.

Prove: $\overrightarrow{AE} \perp \overrightarrow{CF}$

ons

arough a pt. outside a line, there is actly 1 line \parallel to the given line.

2 | lines are cut by a trans., then t. int. 🖄 are ≅.

2 | lines are cut by a trans., then rr. ⁄s are ≅.

Add. Post.

bstitution Prop.

bstitution Prop.

ns

e meas. of an ext. \angle of a \triangle = the m of the meas. of the 2 remote int.

*r*en

bstitution Prop.

V. Prop. of =

Bis. Thm.

ostitution Prop.

lines are cut by a trans. and corr. are \cong , then the lines are \parallel .

(x + 2y) + (2x + y) = 90,

0 = 35, x + 110 - 4x = 35,

8; 2x + y = 5x - y,

Key to Chapter 3, pages 99-103

Statements

- 1. $\overrightarrow{AB} \parallel \overrightarrow{CD}$
- 2. $m \angle BAC + m \angle ACD = 180$
- $3. \ \frac{1}{2}m \angle BAC + \frac{1}{2}m \angle ACD = 90$
- 4. \overrightarrow{AE} bisects $\angle BAC$; CF bisects $\angle ACD$.
- 5. $m\angle 2 = \frac{1}{2}m\angle BAC;$ $m \angle 3 = \frac{1}{2} m \angle ACD$
- 6. $m \angle 2 + m \angle 3 = 90$
- 7. $m \angle AXF = m \angle 2 + m \angle 3$
- 8. $m \angle AXF = 90$
- 9. $\overrightarrow{AE} \perp \overrightarrow{CF}$

Reasons

- 1. Given
- 2. If 2 | lines are cut by a trans., then s-s. int. \(\Lambda \) are supp.; def. of supp. \(\Lambda \)
- 3. Div. Prop. of =
- 4. Given
- 5. ∠ Bis. Thm.
- 6. Substitution Prop.
- 7. The meas. of an ext. \angle of a \triangle = the sum of the meas. of the 2 remote int. 🕸
- 8. Substitution Prop.
- 9. Def. of \perp lines
- 34. Since 3x and 3y are meas. of s-s. int. $\angle s$,

$$3x + 3y = 180$$
, and $x + y = 60$. Then $m \angle EDF = m \angle CDA = 180 - (x + y) = 120$. $\angle EBF$ is the third \angle of a \triangle with \triangle of meas. $2x$ and $2y$, so $m \angle CBA = 180 - (2x + 2y) = 180 - 120 = 60$.

Then, in ABCD, $m \angle CDA + m \angle CBA = 120 + 60 =$

180. Also, $\angle BCD$ is an ext. \angle of $\triangle ECF$ with remote int.

 \leq of meas. 2x and y, so $m \angle BCD = 2x + y$. Similarly,

 $m \angle BAD = 2y + x$. So, $m \angle BCD + m \angle BAD =$

3x + 3y = 180. Therefore, in *ABCD* opp. \angle s are supp.

Page 99 • EXPLORATIONS

- 1-4. Sketches and angle measures will vary. 1. False; true for acute \(\text{\(\) \\
- 2. False; true for acute \(\Delta \) 3. True 4. False; true for rt. \(\Delta \)

Page 103 • CLASSROOM EXERCISES

- 1. convex polygon 2. nonconvex polygon 3. not a polygon 4. nonconvex polygon
- 5. not a polygon 6. nonconvex polygon 7. It has the same shape.
- 8. (102 2)180 = 18,000;360