
Name ____________________________

Period _____

Karel J Robot

Chapter 4 HW

[image: image1.jpg]|55
| =

SteepleChase
HighHurdles

Hurdles
Sprint

Problem 0

Using the diagram at the right, which

of the following will compile? If NOT, state

why.

1. Robot r = new Robot(…);

r.talk();

2. DogBot r = new DogBot(…);

r.talk();

3. AnimalBot r = new DogBot(…);

r.talk();

4. AnimalBot r = new CatBot(…);

r.run();

5. AnimalBot r = new AnimalBot(…);

r.talk();

6. CatBot r = new CatBot(…);

r.scratch():

7. Robot r = new DogBot(…);

r.move();

8. Robot r = new DogBot(…);

r.talk();

9. Circle the numbers in questions 1-8 which are both legal(compile) and exhibit Polymorphism.

Random Walk – Lab 1
(note to teachers: we’re integrating a small piece of the MBS here early in the year – it’s a small break from the oop stuff – it uses a few classes from MBS)

A random walk is a model built on mathematical and physical concepts that is used to explain how molecules move in a closed space, or as the basis for several mathematical models that predict stock market prices.

Owen Astrachan

“A Computer Science Tapestry”, Chapter 7
McGraw Hill, New York, 1997

Write a class called RandomWalkerBot. The robot randomly moves East and West around its starting point. Each time the robot is to move it generates a random number to simulate a “flip” of a coin. The class should maintain the number of steps it has taken and its distance from the origin(1,1). Karel should not be able to run into the West wall. If Karel is standing next to the wall when it is time to move, it should just simply move away from the wall (DO NOT generate a random number – just move away). Class invariants (things that are always true): bot will always be facing either East or West; bot will not have a wall at its back; the only wall in the World is the West wall. You may not assume where in the world that the client will place the bot.

To help you, the main/driver has been written for you below.

The client will want to know the location where the robot finished; you should return a Location(mbs) object. Also, as discussed in class, you should use the RandNumGenerator(mbs) class to get an instance of the Random(Java) class. (We’ve edited the RandNumGenerator.java file so you all have the same seed for the generator.) When you generate your random integer, go West when you get a 0 and East with a 1.
public static void main(String args[]) {

RandomWalkerBot karel = new RandomWalkerBot(2, 3, East, 0);
for (int moves=1; moves<=10; moves++) {

karel.move();

}

System.out.println("The robot is " + karel.distFromOrigin() + " units from Origin");

System.out.println("The robot moved " + karel.getNumMoves() + " times");

System.out.println("The robot’s current location is " + karel.location());

}

Racer Robots Lab – Lab 2

[image: image2.jpg]<ssbstracte>

a

7

(note: for the hurdles and high-hurdles in the world, they are not necessarily on every avenue – as the graphic
above might falsely lead you to believe – we’ll run this lab in class before you get started so you are clear)

Each robot races to the finish line (a beeper). Call the method runRace().

Each robot encounters obstacles along the way. Call the method raceStride().

There will be an abstract class called AbstractRacerRobot. The two methods above, runRace() and raceStride(), go in AbstractRacerRobot. You decide where they each are to be implemented - ask yourself if the method would be implemented the same regardless of subclass – if the answer is yes, that tells you one thing – if the answer is no, that tells you another.

There will be another abstract class called AbstractHurdlerRobot. It will contain at least 3 methods (you decide whether the methods are abstract or not) – up(), over(), and down(). You figure out what AbstractHurdlerRobot should have as a superclass and which classes should inherit from AbstractHurdlerRobot.
Some of the concrete subclasses (there are 4) will need other methods (because, of course, you’re going to re-factor/stepwise-refine your algorithms – create other methods and necessary).

The 4 concrete classes will be SteepleChaserBot, HighHurdlerBot, HurdlerBot, and SprinterBot.

Step 1:
draw (using BlueJ) the complete Inheritance structure. Your diagram should make it clear as to what methods there will be and where they will go (use the diagramming method we’ve been using in class). At this point, you are making your best guess as to the structure. You’ll probably not be correct. What will happen is, as you code you’ll find a better OO organization of the methods and possibly the inheritance structure – then you’ll adjust. In order to do this step correctly, you will have to stop and think a bit about the algorithms so you have an idea how you will refactor and stepwise-refine (i.e., what helper methods will you create).

Step 2: write the AbstractRacerRobot abstract class (what’s its superclass?)

Step 3: write SprinterBot – test it by itself and don’t go on until it works
Step 4: write the AbstractHurdlerRobot abstract class (what’s its superclass?)

Step 5: write SteepleChaserBot – test it by itself and don’t go on until it works
Step 6: write HighHurdlerBot – test it by itself and don’t go on until it works
Step 7: write HurdlerBot – test it by itself and don’t go on until it works
Step 8:
Look for any code you may have written in more than one method – if so, pull it out and create one method. Next, look for any methods that you may have written in more than one class – if so, look for a better place to put those methods

Step 9:
make sure your client code demonstrates polymorphism - you should explain what code is polymorphic and why (using English sentences)

Step 10:
use BlueJ to draw the object relationships – capture the screen graphic using alt-PrintScrn and then go to Paint and paste (save as graphic file in your project folder)

Step 11:
Justify your choices for OO/class/method design. There is no one perfect organization of the classes/methods – some are, however, better than others. I’m interested in your justification more than whether you found the best organization. This is a very important part of your learning. You should use the terminology we’ve been focusing on the last few weeks. You should use English sentences, refer to your object diagrams, and incorporate OO terminology into your design justification. You must word-process your write up.

In particular, make sure to explain:

· where in your code you are using polymorphism

· for the helper/auxiliary methods you chose to write, why did you write them and why did you put them where you did

· where in your code you are overriding methods and why

facingEast

RandomWalkerBot

frontIsClear

Robot

UrRobot

dig()

This diagram should help you. Also, you might want to use the static method in the Point2D class that will calculate the distance for you – choose the proper distance methods, as there are several “overloaded” methods there – you want the one with 4 parameters.

We’ll go over with you how to read the API so you can use classes like Location, Color, Math, Point2D.

scratch()

talk()

run()

CatBot

run()

talk()

move()

DogBot

abstract talk()

AnimalBot

Robot

You can just put class headings into files. When you compile in BlueJ, it’ll draw it for you – you won’t need code within the classes

public abstract class A extends UrRobot {} //would go in A.java

public class B extends A {} //would go in B.java

