
Name ________________ Per ___

Queue Homework

1. What is the output of the following code?

Queue<Integer> q = new LinkedList<Integer>();

for (int k=1; k<=3; k++) {

q.add(new Integer(k-1));

q.add(new Integer(k+1));

}

while(!q.isEmpty()) {

Integer obj = q.remove();

System.out.println(obj.intValue());

}

2. A Morse Code message is represented in a program as a queue of strings. Each string consists of dots and dashes. The message always ends with a special terminator string

private final String terminator = “END”;

Write a method

public void replace (Queue<String> morseCode)

that replaces each question mark (represented by “..__..”) with a period (represented by “._._._”), leaving all other codes unchanged.

3. Write a method to reverse the items in parameter q. The only data structure you should use to help you is an ArrayList. Part B of this problem is to write a second solution – but use NO other data structures – it’s a challenge(if you can't it's ok – most can not -come back to this if you have time and enjoy)!

public static void reverseQueue(Queue<Object> q) {
4. One way to implement a Queue uses something called a Ring Buffer (circular queue), which is simply an array used in a circular manner. If we used an array in a regular linear manner, we would have to shift the whole array forward whenever we removed the first value. In a ring buffer we simply adjust a pointer that defines the “logical” first element. The state of the queue is maintained with the help of two indices, front and rear. front points to the first element in the queue, which will be returned by the next call to the dequeue method; dequeue also increments the front index. rear points to the empty slot following the last stored element. The enqueue method stores the next value in the slot pointed to by rear and increments the rear index. Both front and rear wrap around the end of the array to the beginning. This mechanism helps to maintain a queue without shifting the whole array.

Before:

	
	
	1
	1
	2
	3
	5
	8
	13
	
	

After: (we’ve removed 1,1 and inserted 21,34,55)

	55
	
	
	
	2
	3
	5
	8
	13
	21
	34

A class RingBufferQueue implements a queue of chars. It has a constructor that allocates a character array of a given size and initializes it to an empty state:

public RingBufferQueue(int capacity) {

characters = new char[capacity +1];

front = 0;

rear = 0;

last = capacity;

}

a) Write a void method flush() that empties the queue (without deallocating characters).

b) Write a boolean method isEmpty()

c) Write a boolean method enqueue(char ch). The method should return true if the operation is successful and false if the queue is full.

5) For the following questions, assume that mystery(int) is a boolean method
and that the following declarations have been made:

int val;

Queue<Integer> q = new LinkedList<Integer>();

Stack<Integer> s = new Stack<Integer>();

for (int i = 0; i < 8; i++)

{ val = IO.readInt();

 if (mystery(val)) q.add(val);

 else s.push(val);

}

while (!s.isEmpty())

{ System.out.print(s.top());

 s.pop();

}

while (!q.isEmpty())

{ System.out.print(q.peek());

 q.remove();

}

Assume an input of: 1 2 3 4 5 6 7 8. Identify(circle) the outputs which are possible.

12345678

87654123

18765432

87643215

Assume an input of: 8 7 6 5 4 3 2 1. Identify(circle) the outputs which are possible.

81234567

12356847

87654321

24687531

12348765

34568712
front

front

rear

rear

